| <b>Q1.</b> lr | n this | quest | tion, give all values of pH to 2 decimal places.                                                                                               |    |
|---------------|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
|               | (a)    | The   | e ionic product of water has the symbol $K_{\scriptscriptstyle m w}$                                                                           |    |
|               |        | (i)   | Write an expression for the ionic product of water.                                                                                            | (1 |
|               |        |       |                                                                                                                                                | (1 |
|               |        | (ii)  | At 42°C, the value of $K_w$ is 3.46 × 10 <sup>-14</sup> mol <sup>2</sup> dm <sup>-6</sup> .                                                    |    |
|               |        |       | Calculate the pH of pure water at this temperature.                                                                                            |    |
|               |        |       |                                                                                                                                                |    |
|               |        | (iii) | At 75 °C, a 0.0470 mol dm <sup>-3</sup> solution of sodium hydroxide has a pH of 11.36. Calculate a value for $K_{\rm w}$ at this temperature. | (2 |
|               |        |       |                                                                                                                                                | (2 |
|               | (b)    |       | thanoic acid (HCOOH) dissociates slightly in aqueous solution.                                                                                 |    |
|               |        | (i)   | Write an equation for this dissociation.                                                                                                       | (1 |
|               |        | (ii)  | Write an expression for the acid dissociation constant $K_a$ for methanoic acid.                                                               |    |

|       |                                                                                                                                                                                                                                                                       | (1) |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (iii) | The value of $K_a$ for methanoic acid is 1.78 × 10 <sup>-4</sup> mol dm <sup>-3</sup> at 25 °C. Calculate the pH of a 0.0560 mol dm <sup>-3</sup> solution of methanoic acid.                                                                                         |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       |                                                                                                                                                                                                                                                                       | (3) |
|       |                                                                                                                                                                                                                                                                       |     |
| (iv)  | The dissociation of methanoic acid in aqueous solution is endothermic.                                                                                                                                                                                                |     |
|       | Deduce whether the pH of a solution of methanoic acid will increase, decrease or stay the same if the solution is heated. Explain your answer.                                                                                                                        |     |
|       | Effect on pH                                                                                                                                                                                                                                                          |     |
|       | Explanation                                                                                                                                                                                                                                                           |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       | (Extra space)                                                                                                                                                                                                                                                         |     |
|       |                                                                                                                                                                                                                                                                       | (3) |
|       |                                                                                                                                                                                                                                                                       |     |
| A bu  | value of $K_a$ for methanoic acid is 1.78 × 10 <sup>-4</sup> mol dm <sup>-3</sup> at 25°C.<br>ffer solution is prepared containing 2.35 × 10 <sup>-2</sup> mol of methanoic acid and 1.84 <sup>-2</sup> mol of sodium methanoate in 1.00 dm <sup>3</sup> of solution. |     |
| (i)   | Calculate the pH of this buffer solution at 25°C.                                                                                                                                                                                                                     |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       |                                                                                                                                                                                                                                                                       |     |
|       |                                                                                                                                                                                                                                                                       |     |

(c)

|              |          | (Extra space)                                                                                     |                        |
|--------------|----------|---------------------------------------------------------------------------------------------------|------------------------|
|              |          |                                                                                                   | (3)                    |
|              | (i       | i) A 5.00 cm³ sample of 0.100 mol dm⁻³ hydrochloric acid is added to the solution in part (c)(i). | buffer                 |
|              |          | Calculate the pH of the buffer solution after this addition.                                      |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
|              |          | (Extra space)                                                                                     |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   | (4)<br>Total 20 marks) |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   |                        |
| <b>Q2.</b> T | his ques | stion is about several Brønsted–Lowry acids and bases.                                            |                        |
|              | (a) [    | Define the term <i>Brønsted–Lowry</i> acid.                                                       |                        |
|              |          |                                                                                                   |                        |
|              |          |                                                                                                   | (1)                    |

| ООН             | +                                  | H <sub>2</sub> O                                                                       | <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH.COO-                                                                                                                                                                                                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                 | H₃O⁺                                                                                                                                                                                                                                                                                                                                                                                                            | (1                       |
|-----------------|------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 | (-                       |
| $NH_2$          | +                                  | H₂O                                                                                    | <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH <sub>2</sub> NH <sub>2</sub> .                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                                                                                                                                 | OH-                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|                 | 1                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 | (1                       |
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| NO <sub>3</sub> | +                                  | H <sub>2</sub> SO <sub>4</sub>                                                         | <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H <sub>0</sub> NO <sub>0</sub> +                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                 | HSO <sub>4</sub> -                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 | (1                       |
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| Calculate       | e the tota                         | al volume o                                                                            | f the solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion formed. S                                                                                                                                                                                                                                  | State the                                                                                                                                                                                                                                                                                                                                                                                         | units.                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|                 |                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| (Extra su       | <br>ace)                           |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|                 | NO <sub>3</sub> A 25.0 c Distilled | NO <sub>3</sub> +  A 25.0 cm <sup>3</sup> samp Distilled water was Calculate the total | A 25.0 cm³ sample of 0.085 Distilled water was added upon Calculate the total volume of the control of the cont | Brønsted–Lowry base ( <b>B</b> ) by writing ADOH + H <sub>2</sub> O  NH <sub>2</sub> + H <sub>2</sub> O  A 25.0 cm <sup>3</sup> sample of 0.0850 mol dm Distilled water was added until the pholographic Calculate the total volume of the solu | Brønsted–Lowry base ( <b>B</b> ) by writing <b>A</b> or <b>B</b> in each OOH + H <sub>2</sub> O CH.COO:  NH <sub>2</sub> + H <sub>2</sub> O CH.NH.  NO <sub>3</sub> + H <sub>2</sub> SO <sub>4</sub> H.NO.  A 25.0 cm <sup>3</sup> sample of 0.0850 mol dm <sup>-3</sup> hydrochloric Distilled water was added until the pH of the solution Calculate the total volume of the solution formed. S | Brønsted-Lowry base (B) by writing A or B in each of the s  OOH + H <sub>2</sub> O CH.COO +  NH <sub>2</sub> + H <sub>2</sub> O CH.NH +  NO <sub>3</sub> + H <sub>2</sub> SO <sub>4</sub> H.NO +  A 25.0 cm <sup>3</sup> sample of 0.0850 mol dm <sup>-3</sup> hydrochloric acid wa Distilled water was added until the pH of the solution was 1.  Calculate the total volume of the solution formed. State the | NH₂ + H₂O ← CH.NH. + OH- |

Three equilibria are shown below. For each reaction, indicate whether the

(b)

| ••••• |                                                                                                                                                      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                      |
|       | 298 K, the value of the acid dissociation constant ( $K_a$ ) for the weak acid HX in eous solution is 3.01 × 10 <sup>-5</sup> mol dm <sup>-3</sup> . |
| (i)   | Calculate the value of $pK_a$ for HX at this temperature. Give your answer to 2 decimal places.                                                      |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
| (ii)  | Write an expression for the acid dissociation constant ( $K_a$ ) for the weak acid                                                                   |
| (11)  | HX.                                                                                                                                                  |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
| (iii) | Calculate the pH of a 0.174 mol dm <sup>-₃</sup> solution of HX at this temperature.<br>Give your answer to 2 decimal places.                        |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
|       | (Extra space)                                                                                                                                        |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |
|       |                                                                                                                                                      |

| Calculate the pH of this buffer solution at 298 K.<br>Give your answer to 2 decimal places. |  |
|---------------------------------------------------------------------------------------------|--|
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
| (Extra space)                                                                               |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |

(Total 18 marks)

| Q3. | Buffer solutions are important in biological systems and in industry to maintain almost constant pH values. |                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|     | (a)                                                                                                         | In the human body, one important buffer system in blood involves the hydrogencarbonate ion, $\frac{HCO_3}{3}$ , and carbonic acid, $H_2CO_3$ , which is formed when carbon dioxide dissolves in water.  (i) Use the following equation to explain how this buffer maintains a constant pH of 7.41 even if a small amount of acid enters the bloodstream. $H_2CO_3(aq)  \rightleftharpoons  H^*(aq)  +  \stackrel{HCO_3}{3}  (aq)$ |     |  |  |  |  |
|     |                                                                                                             | (ii) In a sample of blood with a pH of 7.41, the concentration of $^{\text{HCO}_3^-}$ (aq) ions is $2.50 \times 10^{-2}$ mol dm <sup>-3</sup> and the concentration of $^{\text{H}_2^-}$ CO <sub>3</sub> (aq) is $1.25 \times 10^{-3}$ mol dm <sup>-3</sup> . Calculate a value for the acid dissociation constant, $^{\text{H}_3^-}$ Carbonic acid at this temperature.                                                          |     |  |  |  |  |
|     | (b)                                                                                                         | In industry, the pH of a solution used to dye cloth must be controlled or else the                                                                                                                                                                                                                                                                                                                                                | (5) |  |  |  |  |
|     | (~)                                                                                                         | colour varies.  A solution of dye in a beaker is buffered by the presence of ethanoic acid and                                                                                                                                                                                                                                                                                                                                    |     |  |  |  |  |

dm<sup>-3</sup> and the concentration of sodium ethanoate is 0.10 mol dm<sup>-3</sup>. The value of  $K_a$  for ethanoic acid is 1.74 × 10<sup>-5</sup> mol dm<sup>-3</sup> at 298 K.

sodium ethanoate. In the solution, the concentration of ethanoic acid is 0.15 mol

(i) A 10.0 cm³ portion of 1.00 mol dm⁻³ hydrochloric acid is added to 1000 cm³ of

|          |         | this buffered solution.                                                                                                                                                                  |              |
|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|          |         | Calculate the number of moles of hydrochloric acid added.                                                                                                                                |              |
|          | (ii)    | Calculate the number of moles of ethanoic acid and the number of moles of sodium ethanoate in the solution after addition of the hydrochloric acid.  Mol of ethanoic acid after addition |              |
|          |         | Mol of sodium ethanoate after addition                                                                                                                                                   |              |
|          |         |                                                                                                                                                                                          |              |
|          | (iii)   | Hence calculate the pH of this new solution. Give your answer to 2 decimal places.                                                                                                       |              |
|          |         |                                                                                                                                                                                          |              |
|          |         | (Total 11 ma                                                                                                                                                                             | (6)<br>arks) |
|          |         |                                                                                                                                                                                          |              |
|          |         |                                                                                                                                                                                          |              |
| Q4.Ammor | nia and | d ethylamine are examples of weak Brønsted–Lowry bases.                                                                                                                                  |              |
| (a)      | State   | e the meaning of the term <i>Brønsted–Lowry base</i> .                                                                                                                                   |              |
|          |         |                                                                                                                                                                                          |              |
|          |         |                                                                                                                                                                                          | (1)          |

| (ii) In terms of this reaction, state why the solution formed is <b>weakly</b> alkaline.  (c) State which is the stronger base, ammonia or ethylamine. Explain your answer.  Stronger base |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (c) State which is the stronger base, ammonia or ethylamine. Explain your answer.  Stronger base                                                                                           | (1) |
| Stronger base                                                                                                                                                                              | (1) |
|                                                                                                                                                                                            |     |
| Explanation                                                                                                                                                                                |     |
| (Extra space)                                                                                                                                                                              |     |
|                                                                                                                                                                                            | (3) |
| (d) Give the formula of an organic compound that forms an alkaline buffer solution when added to a solution of ethylamine.                                                                 |     |
|                                                                                                                                                                                            | (1) |
| (e) Explain qualitatively how the buffer solution in part (d) maintains an almost constant pH when a small amount of hydrochloric acid is added to it.                                     |     |
|                                                                                                                                                                                            |     |

|               | (2)<br>(Total 9 marks) |
|---------------|------------------------|
|               |                        |
| ·             |                        |
| (Extra space) |                        |
|               |                        |
|               |                        |